Revisiting AES-GCM-SIV: Multi-user Security, Faster Key Derivation, and Better Bounds

Priyanka Bose UCSB

Viet Tung Hoang FSU

Stefano Tessaro
UCSB

EUROCRYPT 2018

Security Goals

Authenticated Encryption (AE) achieves both of these!
This talk: Multi-user security of AE

Authenticated Encryption (AE)

 (with associated data)Every message encrypted with distinct nonce
e.g. nonce = counter
"Conventional" AE (e.g., GCM)
Nonce repeat $=$ total break

Nonce-misuse resistant AE (MRAE) [RS06] Nonce repeat only leaks message equality

Powerful adversaries can collect vast amounts of Internet traffic: State actors, botnets, ...

溞 WIRED

NSA's
Room 641A at AT\&T
~ 86 TB/day*

Golden Shield Project Aka "The Great Firewall"

All Internet traffic to/from China

Large-scale attacks

https://www.amazon.com

https://www.google.com

https://www.yahoo.com

Multi-user security [Bellare-Boldyreva-Micali, ‘00]

One－out－of－many key－recovery attack［Biham＇96］

固＝index．html

$$
C_{i}=\operatorname{Enc}\left(K_{i}, 0, \text { 目 }\right)
$$

For p different K＇s：
Is $\operatorname{Enc}(K, 0$, 且 $) \in\left\{C_{1}, \ldots, C_{u}\right\}$ ？

$$
\begin{aligned}
& \text { e.g.: } p=2^{64} \\
& k=128
\end{aligned} \quad \square\left\{\begin{array}{l}
u=1: \quad \text { Adv. }=2^{-64} \\
u=2^{64}: \text { Adv. } \approx 1
\end{array}\right.
$$

Typical nonce choice: Counters! (e.g., RFC 5116)

For p different K 's:
Is $\operatorname{Enc}(K, 1, ~$ 目 $) \in\left\{C_{1}, \ldots, C_{u}\right\}$?
Advantage $=\frac{p \times u}{2^{k}}$

Here: d-bounded model:
 Same nonce reused by $\leq d$ users when encrypting.

$$
\text { Advantage }=\frac{p \times d}{2^{k}}
$$

Random nonces $N_{0}, N_{1}, N_{2}, \ldots$
d=small const
Random N_{0}, then $N_{i}=N_{0}+i$
e.g., RGCM (TLS 1.3) [BT16]

Arbitrary nonces
$\boldsymbol{d}=u$

Our Work

Multi-user security of AE in the d-bounded model

Here, we focus on AES-GCM-SIV [Gueron-Langley-Lindell, '17]

Main message: "Security degrades linearly in d "

On the way: New techniques for mu analysis of AE

- Nonce-misuse resistant AE secure beyond birthday bound
- Candidate RFC standard
- Implemented in Google's

BoringSSL and QUIC

- No mu security analysis

AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption draft-irtf-cfrg-gemsiv-08

Abstract
This memo specifies two authenticated encryption algorithms that are nonce misuse-resistant - that is that they do not fail catastrophically if a nonce is repeated.

Status of This Memo

Roadmap

1. AES-GCM-SIV: Overview \& results
2. Proof ideas
3. Lessons learned \& conclusions

SIV mode [Rogaway-Shrimpton, '06]
IV-based ind-cpa secure encryption CBC, CTR, ...

GCM-SIV [Gueron-Lindell, '15

$$
\mathrm{E} \in\{\mathrm{AES}-128, \mathrm{AES}-256\}
$$

Problem: Security of GCM-SIV is inherently affected by the Birthday Bound

AES-GCM-SIV [Gueron-Langley-Lindell, '17]
"Nonce-based key derivation"

Example. $B=2^{16}, L=2^{64}$

AES-GCM-SIV

$$
\begin{aligned}
& \mathrm{N} \| 0 \rightarrow \mathbb{E}_{K} \rightarrow K_{1} \\
& \mathrm{~N} \| 1 \rightarrow \mathbb{E}_{K} \rightarrow K_{2}
\end{aligned}
$$

More efficient, but not a good PRF!

This work - main result

\# ideal-cipher queries
MRAE single-user Adv. $\approx \frac{L \cdot B}{2^{128}}+\frac{p}{2^{k}}+\frac{Q}{2^{96}}$
Truncationbased KDF
[GL17, IS17] $k \in\{128,256\}$
\# blocks encrypted
per user-nonce pair

MRAE multi-user Adv. $\approx \frac{L \cdot B}{2^{128}}+\frac{d(p+L)}{2^{k}}$
[This work]
General class of natural KDFs (includes original proposal)

This work - main result

Arbitrary nonces: $d=L \rightarrow$ 256-bit keys

If $d \approx$ const (e.g., random nonces)
\rightarrow su security = mu security

MRAE multi-user Adv. $\approx \frac{L \cdot B}{2^{128}}+\frac{d(p+L)}{2^{k}}$

Roadmap

1. AES-GCM-SIV: Overview \& results
2. Proof ideas
3. Lessons learned \& conclusions

Modeling mu security

$K_{1}, K_{2}, \ldots \leftarrow \$ \mathcal{K}$

ideal cipher
$\forall i$ and any two queries:
$(i, N, M) \neq\left(i, N^{\prime}, M^{\prime}\right)$

MRAE security

Unless: C previously returned by Enc($i, \mathrm{~N}, \mathrm{M}$)

$K_{1}, K_{2}, \ldots \leftarrow \$ \mathcal{K}$

$\operatorname{Procedure} \operatorname{Enc}(i, \mathrm{~N}, \mathrm{M})$
$\operatorname{Ret} \operatorname{Enc}\left(K_{i}, N, M\right)$
Procedure $\operatorname{Ver}(i, \mathrm{~N}, \mathrm{C})$
$\operatorname{Ret} \operatorname{Dec}\left(K_{i}, N, C\right) \neq \perp$

$$
\begin{aligned}
& \text { Procedure } \operatorname{Enc}(i, N, M) \\
& \operatorname{Ret} C \leftarrow\{0,1\}^{c(M)}
\end{aligned}
$$

$$
\text { Procedure } \operatorname{Ver}(i, \mathrm{~N}, \mathrm{C})
$$

Ret False

$$
b=1
$$

$\operatorname{Adv}_{A E}^{\mathrm{mu}-\mathrm{mrae}}(\boldsymbol{A})=2 \times\left(\operatorname{Pr}\left[b=b^{\prime}\right]-\frac{1}{2}\right)$

The proof

> Makes p ideal-cipher queries

We show: $\operatorname{Adv}_{\mathrm{AES}-\mathrm{GCM}-\mathrm{SIV}}^{\mathrm{mu}-\mathrm{mrae}}(A) \leq \frac{L \cdot B}{2^{128}}+\frac{d(p+L)}{2^{k}}$
Encrypts + verifies
$\leq L$ blocks
B blocks per nonceuser pair
d-bounded encryption queries

Major challenge: Nonce can be re-used across unbounded number of users in verification queries!

Here: Simplifying assumption:

Every nonce re-used by $\leq d$ users in verification queries!

Reminder - AES-GCM-SIV

Step 1 - Ideal KDFs

"Ideal KDF"

Good KDFs: Ideal KDF produces keys that are (almost) pairwise independent.

\neq random function

Step 2 - Ideal AES-GCM-SIV

$(N, i) \rightarrow k_{1} \| k_{2}$

Mu analysis of GCM-SIV ${ }^{+}$

- (almost) pairwise independent keys
- $\leq B$ blocks/user

Mu analysis of AES-GCM-SIV

- ideal KDF
- $\leq B$ blocks/(nonce, user)

Roadmap

1. AES-GCM-SIV: Overview \& results
2. Proof ideas
3. Lessons learned \& conclusions

Lessons learned - It's all about the nonces!

- Random nonces better than counters
- mu security = su security
- Nonces not random \rightarrow use 256-bit keys

(AES-)GCM-SIV - Better than advertised!

Refined proof techniques + ideal-cipher model.

- Tighter bounds even for su security.
- More efficient KDFs.

$$
\begin{aligned}
& \mathrm{N} \| 0 \rightarrow \mathrm{E}_{K} \rightarrow K_{1} \\
& \mathrm{~N} \| 1 \rightarrow \mathrm{E}_{K} \rightarrow K_{2}
\end{aligned}
$$

Minor point: mu security of stand-alone GCM-SIV ${ }^{+}$weaker than ideal:

- POLYVAL $(K, \varepsilon)=0^{128}$ for all K.
- Easy to fix through better padding.

Beyond AES-GCM-SIV - General lessons

- d-bounded model.
- Nonce-based key derivation in the mu setting.
- Analysis of integrity in the mu setting.
- First analysis giving guarantees beyond key collisions.

Thank you!

https://eprint.iacr.org/2018/136

